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We calculate the nonlinear conductance of a quantum point contact using the nonequilibrium Green’s
function technique within the Hartree approximation of spinless electrons. We quantitatively reproduce the
“0.25 anomaly” in the differential conductance �i.e., the lowest plateau at �0.25–0.3�2e2 /h� as well as an
upward bending of higher conductance half-integer plateaus seen in the experiments, and relate these features
to the nonlinear screening and pinning effects.
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I. INTRODUCTION

A quantum point contact �QPC� is a narrow constriction
of a width comparable to the electron wavelength defined in
a two-dimensional electron gas �2DEG� by means of split-
gate or etching technique. Due to quantization of the trans-
verse motion electrons can propagate only via allowed
modes and the low-temperature linear-response conductance
of the QPC shows a steplike dependence on a gate voltage.1

When a bias voltage Vsd is applied between the source and
drain electrodes the integer steps in the differential conduc-
tance N�2e2 /h are smoothed and gradually transformed
into the half-integer plateaus �N− 1

2 ��2e2 /h, where N
=1,2 ,3 , . . . is a number of channels available for
propagation.2–10 Many features of the linear and nonlinear
response of the QPC are by now well understood. However,
even after 20 years have passed since the discovery of the
conductance quantization, some of the important aspects of
the QPC conductance are not resolved yet and are still under
discussion. One of the prominent examples �apart from the
famous “0.7 anomaly”11� is a so-called “0.25 feature” in the
nonequilibrium differential conductance whose origin is un-
der lively current debate.8–10

A theory of the nonequilibrium conductance of the QPC
predicting the above mentioned half-integer plateaus was de-
veloped by Glazman and Khaetskii.2 The half-integer pla-
teaus have subsequently been observed and thoughtfully
studied by a number of groups.3–10 The theory of Glazman
and Khaetskii2 and a later more refined approach by Frost et
al.5 successfully describe the QPC conductance in the regime
when the differential conductance Gd�2e2 /h. However, for
Gd�2e2 /h instead of the expected plateau at �0.5��2e2 /h
practically all experiments show a plateau at �0.2−0.3�
�2e2 /h �sometimes called a 0.25 feature�.3–10 It has been
recently argued that the 0.25 feature corresponds to the fully
spin polarized current even at zero magnetic field.10 This
conclusion implies far reaching consequences for semicon-
ductor spintronics as it opens up exciting possibilities to gen-
erate spin polarized current simply by applying a source-bias
voltage to the quantum wire. However, alternative explana-
tions of the 0.25 feature due to the self-consistent electrostat-
ics and nonlinear screening of the lowest spin-degenerate

subband have been advocated by other groups.8,9 In particu-
lar, Kothari et al.9 demonstrated that the experimental data
are well described by the analytical models of Frost et al.5

with phenomenologically introduced asymmetric voltage
drop between the source and the drain.

A detailed understanding of the QPC conductance is of
prime importance because the QPC represents the corner-
stone of mesoscopic physics and the conductance quantiza-
tion is a fundamental phenomenon of electron transport in
low-dimensional structures. The controversy concerning the
origin of the 0.25 feature outlines the need for microscopic
modeling based on the self-consistent approaches to the elec-
tron interaction and nonlinear screening free from adjustable
parameters. It should be stressed that previous phenomeno-
logical approaches,2,4,5,9 while providing an important insight
for interpretation of experiments, are not, however, able to
uncover a microscopic origin of the observed feature.

In this paper we present a model within the self-consistent
Hartree approximation that allows us to describe the nonlin-
ear screening and evolution of the conductance plateaus out
of equilibrium and thus uncover underlying microscopic ori-
gin of the observed features in the differential conductance.
To solve the Schrödinger equation we employ a standard
nonequilibrium Green’s function �NEGF� formalism.12,13 We
demonstrate that for G�2e2 /h the differential conductance
exhibits ��0.25–0.3��2e2 /h plateau �as opposed to the
0.5�2e2 /h plateau predicted by the noninteracting
theories2,5�. We also find that in the regime of G�2e2 /h the
nonlinear screening causes the half-integer plateaus to bend
upward as Vsd increases. Note that this bending can be
clearly seen in all the reported experiments,3–10 but, surpris-
ingly enough, its presence passed without comments �except
for a brief discussion in Ref. 4�. Our finding therefore
strongly indicates that 0.25 feature is not spin-related and is
caused by the nonlinear screening and related pinning of
spin-degenerate electrons in the QPC.

II. MODEL

We consider a QPC defined by split gates in a GaAs het-
erostructure; see Fig. 1. The Hamiltonian of the whole sys-
tem �the QPC plus the semi-infinite leads� can be written in
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the form H�r�=− �2

2m��
2+Veff�r�, where r= �x ,y�, m�

=0.067me is the GaAs effective mass. The effective poten-
tial,

Veff�r� = Vconf�r� + VH�r� + Vbias�r� , �1�

is the sum of the electrostatic confinement �including con-
tributions from the top gates, the donor layer, and the
Schottky barrier�, the Hartree and the bias potentials �see
Ref. 14 for details�. We disregard the effect of disorder.
The Hartree potential is written in a standard form14,15

VH�r�= e2

4��0�r
�dr�n�r��� 1

�r−r��
− 1

��r−r��2+4b2 �, where n�r� is the
electron density, �r=12.9 is the dielectric constant of GaAs,
and the second term describes the mirror charges placed at
the distance b from the surface, Fig. 1. The integration is
performed over the whole device area including the semi-
infinite leads; e.g., the Coulomb interaction is included both
in the leads and in the QPC regions.

The Fermi energies EF in the left �L� and right �R� leads
are shifted by the applied source-drain voltage Vsd, EF

L =EF
R

+eVsd, while there is a linear ramp of Vbias�r� over the device
region13 �we set EF

R=0�. For a finite bias the electric current
is calculated as15 I= 2e

h �dE T�E��fL
FD�E�− fR

FD�E��, with T�E�
being the transmission coefficient and fL�R�

FD �E� is the Fermi-
Dirac �FD� distribution in the left �right� leads. To calculate
T�E�, the electron density and the local density of states
�LDOS� we use the standard NEGF method12,13 �see the Ap-
pendix for the details of our calculations�. Having calculated
the current I we are in position to calculate the conductance
G= I /Vsd and the differential conductance Gd=dI /dVsd. The
latter we compute by increasing the bias voltage slightly and
calculating the derivative dI /dVsd numerically.

To outline the role of quantum-mechanical effects in the
electron-electron interaction in the QPC, we also consider
the Thomas-Fermi �TF� approximation solving the standard
TF equation to find the effective TF potential14 and calculat-
ing G and Gd for this potential using the NEGF. This ap-
proximation does not capture quantum-mechanical quantiza-
tion of electron motion and, therefore, utilization of the TF
approximation is conceptually equivalent to a one-electron
noninteracting approach.

III. RESULTS AND DISCUSSION

Figures 1�a� and 1�b� show the conductance G of the QPC
calculated within the TF and Hartree approximations for dif-
ferent source-drain voltages Vsd. The parameters of the QPC
are indicated in Fig. 1 and are chosen close to those typically
used in experiments �note that we performed calculations for
shorter QPCs which show the same behavior�. For zero Vsd
the conductance shows well-defined quantized plateaus for
both TF and Hartree approaches. The latter, however, pre-
dicts broader transition regions between the plateaus. The
reason is the energy level pinning effect.14 This is illustrated
in Figs. 1�c� and 1�d� that show the resonant energy structure
inside the QPC constriction �i.e., the position of the peak in
the LDOS integrated over the geometrical area of the QPC
constriction�. In the TF approach the resonant levels sweep
past EF in a linear fashion. In contrast, the Hartree calcula-

tions show pinning of the energy levels �corresponding to the
one-dimensional �1D� subbands in the narrowest part of the
constriction� to FF within the energy window �2�kBT.
Within this window the FD distribution 0� fFD�1 and thus
the states are only partially filled. This leads to metallic-like
behavior when electrons can be easily rearranged to screen
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FIG. 1. �Color online� ��a� and �b�� Conductance G of the QPC
calculated within the TF and Hartree approximations for different
bias voltages Vsd. ��c� and �d�� Resonant energy structure �i.e., the
LDOS integrated over the geometrical area of the QPC constriction�
in equilibrium, Vsd=0. ��e� and �f�� The differential conductance Gd

calculated within the TF and Hartree approximations. Traces are
taken at different gate voltages with 5 mV step �the dashed rectan-
gular in �f� contains curves with 2.5 mV step�; �g� shows the expe-
rientially measured Gd adopted from Ref. 7. The inset on the top
illustrates a geometry of the QPC defined in a GaAs heterostructure.
A negative voltage is applied to the top gates depleting the 2DEG
residing on the distance b=60 nm beneath the surface. The widths
of the cap, donor, and spacer layers are 14, 36, and 10 nm, respec-
tively; the donor concentration is 0.64�1024 m3. The geometrical
width and length of the constriction are, respectively, 60 nm and
400 nm. Temperature T=0.2 K.
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the external electric field. �For influence of the pinning effect
on equilibrium transport in quantum dots see Ref. 14; see
also Ref. 16 for the experimental studies of the energy level
pinning in the QPC in the magnetic field.�

Out of equilibrium, the energy window eVsd providing
current-carrying states increases as the source-drain voltage
grows and the conductance plateaus become smeared; see
Figs. 1�a� and 1�b�. The plateaus in the conductance G com-
pletely disappear when eVsd exceeds the 1D subband energy
separation inside the QPC constriction. At the same time,
half-integer plateaus �N− 1

2 ��2e2 /h appear in the differen-
tial conductance Gd; see Figs. 1�e� and 1�f�. A comparison of
the TF and Hartree results shows two profound differences
between the calculated Gd. First, the lowest Hartree plateau
N=1 occurs at Gd

H	0.25–0.3�2e2 /h as opposed to the
Gd

TF=0.5�2e2 /h plateau predicted by the TF calculations.
Second, all TF plateaus are flat and rather independent of
Vsd, whereas all higher Hartree plateaus N	2 are bent up-
ward as Vsd increases. Note that these two features of the
calculated Gd

H are clearly seen in all reported experiments3–10

�see Fig. 1�g� for a representative example�.
In order to understand the origin of the above features of

the QPC nonlinear conductance let us inspect the LDOS in-
side the QPC region. Let us first concentrate at the first pla-
teau in the differential conductance. Figures 2�c�, 2�e�, and
2�g� show the evolution of LDOS as Vsd is increased calcu-
lated within the noninteracting TF approach. The enhanced
LDOS in the constriction corresponds to the position of the
bottom of the lowest propagating subband. In the TF ap-
proximation the effective confinement potential is symmetri-
cally distributed relative to Vbias �that ramps linearly along
the device�. Because of this the 1D subband touches Vbias at
the QPC center �at the energy E=EF

L −
eVsd

2 �. As a result, the
electrons injected from the left lead in the upper half of the
eVsd window �EF

L �E�EF
L −

eVsd

2 � pass through the QPC with
the unit probability. However, the electrons in the lower half
of the eVsd window experience a potential barrier and hence
are reflected back �see partial current profiles, T�E��fL

FD�E�
− fR

FD�E��, in small insets in Figs. 2�c�, 2�e�, and 2�g��. Thus,
the electrons injected from the left lead give rise to the con-
ductance of the half of the conductance unit, Gd=0.5
�2e2 /h. For electrons moving in the opposite direction,
from the drain to the source electrode, there is no available
channel to propagate and all of them are reflected.

A character of electron transport changes dramatically
when interaction is included at the level of the quantum-
mechanical Hartree approach. Figures 2�d�, 2�f�, and 2�h�
show the LDOS inside the constriction calculated within the
Hartree approximation for the first half-integer plateau where
Gd	0.3�2e2 /h. With one partially propagating mode the
electron density inside the constriction is low and the screen-
ing is rather weak, and hence the electron interaction
strongly modifies the potential profile in comparison to the
symmetric TF distribution. The Coulomb charging pushes up
the upper 1D subband inside the QPC constriction to the top
of the eVsd window near the source contact. �It is interesting
to note that the LDOS inside the QPC out of equilibrium
resembles a corresponding self-consistent LDOS profile of a
resonant-tunneling diode.17� Thus, the 1D subbands become

pinned to the top of the eVsd window and therefore only a
relatively narrow energy interval can supply current-carrying
states that pass through the QPC �see current profiles in the
insets of Figs. 2�d�, 2�f�, and 2�h��. Hence, the QPC conduc-
tance, Gd	0.3�2e2 /h, becomes smaller than a half of the
conductance unit G0=2e2 /h. Our calculations provide there-
fore a microscopic foundation of the phenomenological ap-
proaches that describe the 0.25 anomaly assuming a nonsym-
metric voltage drop inside the constriction.5,9

Let us now turn to higher half-integer plateaus. In this
case there is at least one propagating state inside the constric-
tion, which, in turn, leads to enhanced screening. Indeed,
despite the voltage drop between the left and the right leads,
the Hartree effective potentials Veff and the LDOS are prac-
tically flat inside the QPC; see Figs. 3�b� and 3�d�. This is in
contrast to the corresponding TF results which do not ac-
count for screening and thus follow the linear drop of Vbias;
see Figs. 3�a� and 3�c�. Because of the enhanced screening,
at the center of the QPC the Hartree 1D subbands are situ-
ated lower than the corresponding TF subbands �i.e., below
EF

L −
eVsd

2 �, and hence the energy window providing the trans-

FIG. 2. �Color online� The charge density and the LDOS of the
QPC calculated in the Thomas-Fermi and Hartree approximations
�left and right panels, respectively� for the first half-integer plateau
for different Vsd. The corresponding gate voltages Vg are marked by
arrows in Figs. 1�a�, 1�b�, 1�e�, and 1�f�. The effective potential Eq.
�1� is plotted by the dashed lines. Solid slanted lines denote the bias
potential profile Vbias. Insets show the current profiles,
T�E��fL

FD�E�− fR
FD�E��.
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mitted states through the QPC exceeds the half of the avail-
able energy interval eVsd �see the current profiles in the inset
of Figs. 3�b� and 3�d��. As a result, the QPC conductance
corresponding to the highest subband is larger than a half of
the conductance unit G0. �Note that all lower subbands are
fully occupied and thus contribute to one conductance unit
each.� Thus, the enhanced screening, which becomes more
pronounced as Vsd increases, is the reason for the upward
bending of the higher half-integer plateaus.

Finally, we stress that we utilized a model of spinless
electrons in the Hartree approximation. The present approach
can be easily extended to account for the spin effect within
the framework of the spin-density functional theory �SDFT�.
However, some previous studies questioned the reliability of
the SDFT for the system at hand because of the self-
interaction errors of the local spin-density approximation.18

Hence, the definite answer about the role of the spin in the
nonlinear conductance of the QPC might require approaches
that go beyond the mean-field method used in the present
study �e.g., quantum Monte Carlo, etc.�. At the same time, an
excellent quantitative agreement of our calculations with the
experimental results outlines the dominant role of the self-
consistent electrostatics and the nonlinear screening and
strongly indicates that the 0.25 feature is not spin-related. We
note also its generic property because calculations for QPC
of different lengths and widths give the same qualitative be-
havior.

To conclude, using NEGF formalism within the Hartree
model of spinless electrons we reproduced quantitatively the
observed features of the nonlinear QPC conductance and
provide microscopic interpretation of the 0.25 anomaly as
well as the upward bending of the higher half-integer pla-
teaus in terms of nonlinear screening and pinning effect.

ACKNOWLEDGMENTS

This work was supported by the Swedish Research
Council �VR�.

APPENDIX: NEGF TECHNIQUE FOR CALCULATION
OF THE TRANSMISSION COEFFICIENT OF

THE QPC

The central quantity in the NEGF is the lesser Green’s
function G� �Ref. 12�. To calculate it one has to find first the
retarded Green’s function, Gr,

�E − H�r��Gr�r,r�,E� = 1 , �A1�

where E is an electron energy and 1 is the unitary operator.
This equation can be reformulated using the so-called re-
tarded self-energies of the leads, 
R

r and 
L
r ,

�E − H0 − 
R
r �E� − 
R

r �E��Gr�E� = 1 , �A2�

where H0 is the Hamilton operator for the isolated scattering
region �i.e., excluding the leads�. �For the sake of shortness
we will not write explicitly a coordinate dependence of Gr�.

R�L�

r are functions with nonzero values only at the bound-
aries with the semi-infinitive leads. Coupling the scattering
region with leads is described by the functions

i�R�E� = 
R
r �E� − 
R

a�E� = 2i Im�
R
r �E�� , �A3a�

i�L�E� = 
L
r �E� − 
L

a�E� = 2i Im�
L
r �E�� . �A3b�

The lesser Green’s function in the scattering region is related
to electron flow from right and left reservoirs and is written
as

G��E� = − ifR
FD�E�Gr�E��R�E�Ga�E�

− ifL
FD�E�Gr�E��L�E�Ga�E� , �A4�

where fR�L�
FD are the Fermi-Dirac functions in the right �left�

lead. This equation has to be used in nonequilibrium situa-
tions when Vsd�0 and fR

FD� fL
FD. In equilibrium, when the

Fermi functions in both leads are identical, Eq. �A4� reduces
to

Geq
��E� = 2fR�L�

FD �E�Gr�E� . �A5�

It is also valid under a bias voltage at energies E for which
fR

FD= fL
FD �in practice, fR�L�

FD =1 for those energies�.
In order to calculate the electron density we integrate over

the electron energy E,

n�r� = −
1

2�

 dE Im�G��r,r,E�� . �A6�

We use both Eqs. �A4� and �A5� to perform this integration.
Geq

��E�, Eq. �A5�, is analytic in the upper half of the imagi-

Im(E)

Re(E)

EF=0R EF=eVsdL

Path 1

Path 2

min(Veff)

FIG. 4. An integration path used in Eq. �A6�. Path 2 appears
when the bias voltage Vsd is applied.

FIG. 3. �Color online� TF and Hartree LDOS in the QPC for
different Vsd. �The same as in Fig. 2 but for the second half-integer
plateau in the differential conductance, see arrows at Figs. 1�a�,
1�b�, 1�e�, and 1�f�.�
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nary plane whereas G��E�, Eq. �A4�, has poles below and
above the real E axis. Thus, for the energies when fR�L�

FD =1
we can use Geq

��E� for which we can transform the integra-
tion path from the real axis to the complex plane,19 see Fig.
4, where Geq

��E� is a smooth function of energy. The rest of
the integration �i.e., path 2 in Fig. 4�b� where fR�L�

FD �1� is
close to the real axis and there Eq. �A4� is used. Along the
path 1 only several integration points are needed because the
rapid variations of Geq

��E� are smeared out when the integra-
tion path is far from the real axis. This is especially useful
for the bound states, which give rise to sharp peaks near the
real axis. On the straight path along the real axis, one needs
much more integration points and for large source-drain
voltage it becomes the most time consuming part of
computation.

Equations �A1�, �A2�, and �A4�–�A6� are solved self-
consistently in an iterative way until a converged solution for
the electron density and potential �and hence for the total
Green’s function� is obtained. Having calculated the total
self-consistent Green’s functions, the transmission coeffi-
cient is calculated as12

T�E� = Tr��L�E�Gr�E��R�E�Ga�E�� . �A7�

To speed up computation we employ the hybrid recursive
method working with sin-Fourier transformed Green’s
functions20 and use the second Broyden method for the itera-
tive algorithm.21
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